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Project overview

Preliminary study: corn yield prediction (12 counties)

— Key finding: integrating data from multiple sources
increases prediction accuracy

HARVIST demonstration

Accomplishments

1. Classifier method (SVM) efficiency improvements

2. Integration of classification and clustering together
 Example: only cluster regions known to contain vegetation

Future plans
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@ Key Ideas of the Project APL

« Combine data from multiple, diverse sources: v Ejl - ?{%ﬂ; I
— Satellite imagery (LandSat, MODIS, MISR) T

— Weather stations (NCDC) DN

— Historical crop yields (USDA) S |

— Land cover types (USGS) |

= All"at differentsspatial andgemporal reselutions T
et

—

* Optimize machine learning techniques for image data
— Exploit spatial dependencies to improve efficiency

« Analyze connections between weather and agriculture
— Learn relationships between variables from multiple different data sources
— Our study: Predict crop yield for different weather conditions

MODIS: MODerate resolution Imaging Spectroradiometer;
MISR: Multi-angle Imaging SpectroRadiometer




@ Preliminary Study: Corn Yield Prediction JPL

» Goal: predict corn yield for 12 California counties
— Train on data from 2002, 2003; predict for 2004
* Results:

— Just remote sensing data (NDVI): 17.5% error rate
— Just weather data (temperature and precipitation): 7.9%

— Both: 7.0%

45 E
40+
35-
30
25-
20
15

Error (%)

ONDVI
@ Weather
E Both

(Sorted by error rate for “Both”)




Eile View Labels SVM Output
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Featured Accomplishments SPL
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@ (1) SVM Efficiency Improvements AJPL

» Support Vector Machines (SVMs)

— Identify a hyperplane that maximally separates pixels from each
labeled class

— Pixels on the boundaries are the “support vectors” (SVs)

» Goal: reduce classification time (scales with number of SVs)

— Reduced Set method: identify smaller set of SVs (~10x speedup,
but pay pre-processing cost to find reduced set)

— Nearest Support Vector method: adjust computation based on
“difficulty” of item to be classified (~2x speedup)
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@ (2) Integration of classification, clustering JPL

— ldea: analysis methods share data and results

— Example: clustering pixels from a specific class

(focus of attention)

— User labels and classifies the image using an SVM,
then identifies a specific class to be clustered

— Enables further exploration of class structure

» Motivation here: identifying meaningful sub-groups within a
class where we can build specialized crop prediction models

» Clustering also returns the “average” member of each cluster,
to aid in interpretation of results
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File View Labels SVM Qutput
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File View Labels SVM Qutput
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@ Work In Progress =

« Technology
— Increase SVM, clustering efficiency further
« Methods that leverage spatial relationships in the data
— Conduct summer field study
» Collect ground truth for different crop types in central California
» Use this data to train a crop type classifier
« Enables specialization of yield prediction by crop type
— Add kriging/interpolation methods for to compensate for
missing data or cloudy pixels
» Science

— Analyze time series data from Kansas (105 counties) to identify
factors that impact high/low yield

— Integrate weather, soil properties data
« Compare quality of predictions with and without these data sources
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@ Long Term Goals and Benefits APL

* Produce a single, integrated, graphical system for
classification, clustering, and prediction from
multiple, heterogeneous data sources

« Demonstrate global scalability of enhanced SVM
and clustering methods (optimized for image data)

« Demonstrate feasibility of system by predicting
crop yield from remote sensing, weather, land
cover, and soil type data bases

14



